Baruch Awerbuch T

Dept. of Mathematics and Lab. for Computer Science
MIT, Cambridge, MA 02138

Amotz Bar-Noy 1

Computer Science Department, Stanford University
Stanford, CA 94305

Nathan Linial

IBM Almaden Research Center 650 Harry Road, San Jose, CA 95120
and Computer Science Department, Hebrew University, Jerusalem

David Peleg 3
Department of Applied Mathematics
The Weizmann Institute, Rehovot 76100, Israel

In designing a routing scheme for a communication network it is desirable to
use as short as possible paths for routing messages, while keeping the routing
information stored in the processors’' local memory as succinct as possible.
The efficiency of a routing scheme is measured in terms of its stretch factor—
the maximum ratio between the cost of a route computed by the scheme and
that of a cheapest path connecting the same pair of vertices.

This paper presents a family of adaptive routing schemes for general net-
works. The hierarchical schemes HS, (for every fixed k=1) guarantee a
stretch factor of O(k?2-3%) and require storing at most O(kn?’%log n) bits of
routing information per vertex. The new important features, that make the
schemes appropriate for adaptive use, are
® applicability to networks with arbitrary edge costs;
® name-independence, i.e., usage of original names;
® a balanced distribution of the memory;
® an efficient on-line distributed preprocessing.

1 Supported by Air Force contract TNDGAFOSR-86-0078, ARO contract DAALO03-86-K-0171,
NSF contract CCR8611442, and a special grant from IBM.

{ Supported in part by a Weizmann fellowship and by contract ONR N00014-88-K-0166.

§ Part of this work was carried out while this author was visiting Stanford Umiversity. Supported
in part by a Weizmann fellowship, by contract ONR N00014-88-K-0166 and by a grant of Stan-
ford Center for Integrated Systems.

Copyright © 1989, Stichting Mathematisch Centrum, Amsterdam
Frinted in the Netherlands

1. INTRODUCTION

1.1. Background

A central activity of any computer network is the passing of messages among
the processors. This activity is performed by a routing subsystem, consisting of
a collection of message forwarding mechanisms and information tables, whose
quality 1s pivotal to the overall performance of the network. It is therefore
natural that the design of efficient routing schemes was the subject of much
study over the last two decades.

When designing a routing strategy for a network it is clearly desirable to be
able to route messages with small communication cost. The cost of routing a
message 1S Sin the sum of the costs of the transmissions performed during
the routing. The route efficiency of a routing scheme is formulated in terms of
its stretch factor—the maximum ratio (over all possible origin-destination
pairs) between the communication cost of routing a message from an origin to
a destination using the scheme and the cheapest possible cost for passing a
message from origin to destination.

At the same time, the space used for the routing tables is also a significant
consideration. There are a number of reasons to minimize the memory require-
ments of a routing scheme. The task of routing is usually performed by a
special-purpose processor (an ‘IMP’ in the ISO terminology [12,15]) which may
have limited resources. Furthermore, it is usually desirable that the routing
tables be kept in fast memory (e.g.,, a ‘cache’), in order to expedite message
traflic. Also, we do not want memory requirements to grow fast with the size
of the network, since it means that the incorporation of new nodes to the net-
work requires adding hardware to all the nodes in the network. It is therefore
interesting to search for routing schemes that involve small communication
cost and have low space requirements at the individual vertices.

The problem of routing with small memory is analogous to the problem of
designing compact signs at highway exits, which enable drivers to find their
way, even 1f they do not have any information about geography of the area.
Since signs do not contain full map of the area, drivers will sometimes make
mistakes, i.e. take wrong exits; however drivers should be capable to ‘learn’
from the mistakes and eventually find a way out. Intuitively, it appears plausi-
ble that the ‘larger’ the signs (i.e. memory overhead), the less time and gas is
wasted (1.e. communication overhead).

Let us look at two extreme examples. The direct routing scheme in an »n-
processor network 1s constructed by specifying, at each node v, a set of n —1
pointers, one pointer for each possible destination node xs%4v. Each such
pointer points to some neighbour w of v, to which v will forward a message
destined to x. Th * : s
ally arrives at its destination. Clearly, it is advantageous to set up the pointers

with respect to a fixed destination x in such a way that they form a tree o
shortest paths from the node x, based on

of the direct routing scheme is that each node
(£2(n) bit) routing table.

At the other extreme lies the flooding routing scheme, in
forwarding a message along a shortest path, the origin simj
casts) it through the whole network. Clearly, this scheme req
overhead. On the oth mmunication cost of such m
signifi cantly stead of using just one hink, we may
be using a lot of (p0351bly expensive) hnks. Thus, the stretch factor is
unbounded.

[he natural question which arises here is whether one can
scheme which combines low memory requirements and small
COSt.

design a routing
communication

1.2. Adaptive vs. static schemes

In classifying the various types of routing schemes one usually distinguishes
between those based on adaptive and static policies. While static routing
schemes are sumpler to design and maintain, it 1s commonly accepted that
adaptiveness 1s crucial to the efficient operation of any ‘store and forward’
communication network.

The most significant feature of an adaptive routing scheme 1s 1ts ability to
sense changes in the traffic distribution and the load conditions throughout the
network, and modify the routes accordingly, so that messages in transition
avoid congested or disconnected areas of the network. Typically, the routing
subsystem of the network is required to perform periodic updates in the rout-
ing scheme. Such an update operation involves two main steps. First, 1t 1s
necessary to collect some mformation about the network state, like processor
and link operational status, current queue loads and expected traffic loads.
The collected data 1s used to compute the new edge costs. The cost associated
with a link reflects the estimated hink delay for a message transmitted over that
link. The next step involves deciding on the new routes and setting up the
information tables accordingly. In this paper we do not concern ourselves
with precisely how the link costs are determuned. Rather, we concentrate on
the second step of setting up a routing scheme, with respect to the parameters
of route efficiency and memory requirements discussed earlier.

The adaptive approach imposes several inherent requirements on the routing
schemes. These essential requirements are sometimes hard to achieve. One may
list four main properties characterizing an adaptive scheme.

Arbitrary edge costs. The entire adaptive approach revolves on the ability to
compute and attach varying costs to the edges. Consequently, an inherent
requirement 1s that the routing schemes be able to handle arbitrary edge costs
(as well as arbitrary network topologies). An additional desirable property one
should strive to achieve is that the complexity of the routing scheme does not

depend on the range of the costs (i.e., that the routing algorithm 1s “purely
combinatonal’).

279

Many proposed routing strategies have the property that
ien has to determine not only the routes but also the labels used

ing the vertices. In such strategies, the addressing label of a node

els cannot be too large.) (In the extreme, if one all

ain an explicit description of the shortest paths leadin

' hen the routing problem becomes trivial, but labels

rinced ames by appending appropriately
chosen addressing labels makes the problem much easier, consider the (some-
what similar) telephone system and observe that it is easy (and cheap) to get
umber of an old friend if you know the exact city in which your
ince it takes one call to appropriate telephone directory. On the
d, 1t 1s a difficult (and expensive) task without this knowledge, since
the city where your friend lives, you may end up calling many direc-
I'he approach of using addressing labels 1s reasonable for static routing,
where the routes and the labels are fixed once and for all. However, it is obvi-
ously inappropriate for adaptive schemes, since it would require changing the
addresses of nodes each time the routes are re-computed. Clearly, it is essential
that routing-related system activities be transparent to the user, and in particu-
lar, the addresses specified by a user in order to describe the destination of its
messages should be fixed and independent of the actual routes. (In fact, it is
preferable to allow each vertex to choose its own address.)

A wviable approach is to allow the scheme to employ (changeable) routing
labels internally, but use original (fixed) node names for addressing by users.
This requires the routing algorithm to be able to extract the necessary routing
labels on the basis of the original name. Clearly, the naive approach of storing
‘translation’ tables at the nodes requires 2(n) memory bits at each node even if
the addressing labels are short, and immediately defeats the very essence of

memory-efficient routing. Thus a more sophisticated retrieval mechanism is
required.

Balanced memory. In many routing schemes, different vertices play different
roles and require different amounts of space. For instance, some nodes are
designated as communication centers and are required to store more informa-
tion than others. Other nodes may just happen to be the crossing point of
many routes which are maintained by the scheme. The roles are assigned to
nodes on the basis of graph-theoretic considerations and depend crucially on
the edge costs. Nevertheless, those schemes guarantee that the total (and thus
the average) memory requirements are small.

Such variability in space requirements is again reasonable for static routing,
as some computers may have more memory than others, and it is possible to
tailor the scheme to the availability of appropriate resources at specific nodes,
and designate in advance some nodes to play the role of communication
centers. However, in an adaptive setting the routes change dynamically, and 1n

280

may consid er a cen tral .'

puter, r n notifies all
routes were selected ructures sh . Naintal

ever, this app roach IS resource-consum ng, and

one shoul d tak
memory, SO 1t 1s desirable that the prep rocessin g gont
space constraints 1mpose d on the size of routing mbﬁes 1n the indivi
[his may be of secondary im
access to auxi slower memory.)

1.3. Existing work

[he problem was first raised in [5].]
consequent papers [6,8,11] applies only to some sp
near-optimal routing strategies were designed for var
[10], rings, complete networks and grids [13,14], series-parallel networks, outer-
planar, k-outerplanar and planar networks [3,4]. (By ‘optimal’ we mean here
stretch factor 1 and a total memory requirement of O(nlogsn) bits in an
processor network.)

In [9] the problem is dealt for general networks. Rather than designing a
scheme only for some ﬁxed stretch factor, the method presented in [9] 1s
parameterized, and applies to the entire range of possible stretch factors. Ih
construction yields an almost optimal behaviour, as implied from a lower
bound given in [9] on the space requirement of any scheme with a given
stretch factor. Specifically, the hierarchical routing schemes of [9] guarantee a
stretch factor of 12k + 3 while requiring a total of O(n'* */%) bits of routing
information in the network (for every fixed k=1).

Unfortunately, the routing strategy of [9] lacks all four properties required
from an adaptive routing scheme. It deals only with unit-cost edges (while the
construction of [5] and the separator-based strategies of [3], for instance, apply
also to the case of networks with costs on the edges). It is name-dependent,
since the scheme has to be allowed to fix the addressing labels for all vertices.

(This problem exists also in virtually all previous works.) Local memory 1S not

281

eauiremen ?.S Of E_he S5C il e, b U E

h node, which may reach
n sSome previous works, e.g.,
m 1S a centralized . olyno mial tim e)

)].) Finally, its preprocessing algoritl
Again, this issue was not considered in previous work as well.)

previous schemes of ours [1,2] have tackled these problems. Each of
those sch cceeds in achieving three of the four desirable properties but
leaves one out (balanced memory and name-independence, respectively). The
current scheme 1s based on mgr edients taken from these two schemes com-
bined with some additional new 1deas.

1.4. Contributions of this paper
This paper suggests a novel approach to the problem of routing with small
[n contrast to previous works, 1t enables to simultaneously achieve al/
the adaptiveness properties mentioned above. We present a family of hierarchi-
cal schemes HS,, for every logn=k=1, which use O(k -logn-n*'*) bits of
mory per vertex and guarantee a stretch of O(k?-3%). Note that these com-
do not depend on the range of allowed edge costs, i.e. the algorithm 1is
‘purely combinatorial’. We also have an efficient distributed preprocessing
xm for setting up the tables, that uses space which is bounded by the
same bounds per vertex.

Our approach 1s based on constructing a hierarchy of partitions in the net-
work, and using this hierarchy for routing. In each level, the graph is parti-
tioned into clusters, each managed by a center, or ‘pivot’ node. Messages are
transferred to their destinations using these pivots. This indirect forwarding
enables us to reduce the memory requirements needed for routing, since one
has to define routing paths only for cluster pivots, and not for all the nodes.
On the other hand, it increases communication cost, since messages need not,
in general, be moving along shortest paths towards their destination. With
appropriate partition of the network into clusters we guarantee that both over-
heads are low.

Ihe particular construction method described here differs from that of [9] in
several important ways. To begin with, the two methods make use of
inherently different hierarchical designs. In [9], the scheme is composed of a
collection of independent schemes. Each scheme R&8;, i=1, 1s based on a par-
tition of the network into clusters of radius 2'. Transmitting a message from
anorigin to a destination is based on a ‘trial and error’ process involving
repeated trials, each attempting to route the message using one of the indivi-
dual scheme. In case of failure, the message is returned to the origin, which
then tries the next scheme in the hierarchy. The route of each individual
scheme 1s itself a complex path, composed of three segments: from the origin
to its cluster leader in that partition, from this leader to the leader of the desti-
nation and finally to the destination. In contrast, the routing process
desqribed here is conceptually much simpler. A message 1S passed from the
origlp to the destination in a single try, and no retries are needed. The path
consists of two main segments: first, from the origin to 1its pivot on the

282

approp nate Eevei (wa a chaun
1 ISCH V10D |
routing scheme.

A second important difference 1s m the clustering method.
described 1n [9] are based on radius constrain
ture proposed here is based on size constraints. Thi
for Ehe fact thai the new method 1is capable of
equirements can

L of lower-level pivots), and then to the destination

['he clusters
hereas the clustering struc-
his difference i1s responsible
dling arbitrary edge costs
be bounded.

ture that enables it to store routing ini
pactly in a balanced fashion am
ii mem data retrieval.

[he rest of the paper 1s organiz . aln
necessary definitions. In Section 3 we outhn hierarchical routing scheme.
In Section 4 we introduce some technical preliminaries. In the following Sec-
tion 5 we fill in the 3 details of the scheme, describing the various rout-
Ing tools and components. Section 6 gives the complexity a for the com-
bined scheme. Finally, in Section 7 we give a distributed preprocessing algo-
1ithm that initializes the schemes HS, .

2. DEFINITION OF THE PROBLEM

2.1. The network model

We consider the standard model of a point-to-point communication network,
described by an undirected graph G =(V,E), V ={1,...,n}. The vertices V
represent the processors of the network and the edges £ represent bidirectional
communication channels between the vertices. A vertex may communicate
directly only with its neighbours, and messages between nonadjacent vertices
are sent along some path connecting them in the network.

We assume existence of a weight function w: E—™, assigning an arbitrary
positive weight w(e) to each edge e € E. Also, there exists a name function
name: V—U, which assigns to cach node veV, an arbitrary name name(v)
from some universe U of names. We sometime abuse notation, referring to
name (v) sumply by v.

We assume a synchronous network model in the sense that all nodes have
access to a global clock.

A message sent upon time 7 from node v to node u arrives at u strictly after
time |[7]+w(v,u)—1, but no later than [r]+w(v,u). Intuitively, this means
that messages can be sent only at integer times. (This is why arrival times
depend on [7]|, rather than 7, and edge delays &(e) may fluctuate as
w(e)—e<<o(e)<w(e), for all e<1, 1.e. the delay of e is at most w(e).)

Since we allow message transmissions at times which are not integers, the
algorithm is driven by messages and by the global clock. Messages can be sent
either in response to arriving messages, or in response to clock pulses, which
occur at integer tiumes

For two vertices u,w in a graph G let dist;(u,w) denote the (weighted) length

283

of a shortest path in G between those vertices, 1.e. the cost of the cheapest path
connecting them, where the cost of a path (e,...,e) is Z,<;<,w(e;). For two
sets of vertices U,W n G, let distg(U, W)=min{distg(u,w)lueUwe W}. TI
degree (number of neighbours) of each vertex v eV is denoted by degs(v).
sometimes omit the subscript G where no confusion arises.)

2.2. Routing schemes

A routing scheme RS for the network G =(V,E) consists of two procedures, a
preprocessing protocol and a delivery protocol. The preprocessing protocol per-
forms certain preprocessing in the network, by constructing some distributed
data-structures.

The delivery protocol can be invoked at any origin node and be required to
deliver a certain message to some destination node, which is specified by its
name. The protocol delivers the message from the origin to the destination via
a sequence of message transmissions, which depends on the particular data
structures constructed by the preprocessing protocol.

2.3. Complexities of routing schemes

It 1s convenient to define a character as logn bits, and to count communication
and space 1n terms of characters. We assume that messages sent and variables
maintained at nodes contain a constant number of characters.

We now give precise definitions for our complexity measures for stretch and
memory. The communication cost of transmitting a message over edge e is the
weight w(e) of that edge. The communication cost of a protocol is the sum of
the communication costs of all message transmissions performed during the
protocol. Let C(RS,u,v) denote the communication cost of the delivery proto-
col when invoked at an origin u, with respect to a destination v and an O (1)-
Character message, i.e., the total communication cost of all message transmis-
sions associated with the delivery of the message. Given a routing scheme RS
for an n-processor network G =(V,E), we say that RS stretches the path from

utObe—C—LRM‘

dist (u,v)
We define the stretch factor of the scheme RS to be

STRETCH(RS) = max {M} (1)

uveV dist (u,v)

Comment. STRETCH(RS) is essentially the ‘normalized communication com-
plexity’ of the routing scheme, i.e., the ratio of the communication cost to the
optimal communication cost.

The memory requirement of a protocol is the maximum amount of mMemaory
characters used by the protocol in any single processor in the network. We
define the memory requirement of a routing scheme RS, MEMORY(RS), as the

maximum between the memory requirements of the delivery protocol and the
preprocessing protocols of RS.

284

3. OUTLINE OF T HE SCHEMI

| levels, O0<<i<<k. In each level i we seﬁecﬁ a subset P, of the vertices to
s€rve as post centers, or ‘pivots’. Eacl . as responsible for getting mes-
sages h‘o vcmaces 1n Ms zone . din nem. 1 he sets of _Pwm‘s S&msﬂ’
V. Further, for every 0 <z < Kk, : 1 1S of s

4

MNCSSAZES to

arlly the same; in f act, typ-

[he routing pmcess D mceeds as follows. Sup pose a vertex w wishes to send
'hen w (which 1s always a pivot at level 0)
ch ecks whether 1t 1S possi ib le to deh ver the message local ['his succeeds
if ¥ happens to be 1n w’s out-zone. Otherwise, w identifies this fact and for-
wards the message to its pivot on the next level, say p,;. This pivot has |
chances of succeeding locally since it controls a larger out-zone.] th
destination « is not in p,’s out-zone too, the message gets forwarded by p, to
its pivot 1n the next level, and so on. The process may repeat itself until the
message reaches a prOE having u in its out-zone. In particular, a pivot in th
highest level 1s guaranteed to succeed, since its out-zone consists of the entire
network.

[he routing mechanism used for forwarding a message ‘upwards’ toward a
pivot v from an L 1n 1ts in-zone 1S based on an in-tree (referred to as
IT(v)) rooted at v and spa the appropnate zone. Similarly, the converse
routing mechanism (handling messages ‘downwards’ from the pivot v to a des-
tination 1n its out-zone) is based on an out-tree (referred to as OT (v)). This
algorithm 1s naturally more con than the one used for chmbing upward
towards the root.

[he routing algorithm is described in Figure 1. The organizational structure
and the corresponding route from an origin to a destination 1s portrayed in
Figure 5.

/* level in the hierarchy chimbed so far */ |
I J /* no success */
/* go next level of hierarchy */ |

/* try to reach Destination on OT;(x) */ |
ARD ROUTING (/T ;(Origin)) /* x proceeds to next pivot */

Hierarchical Routing Algorithm
285

Com mem
described here .. the hi
associated with the destinations, and th
tributing messages downwards in the pivot chain
commsﬁ in the scheme presented here the hi h
DIVOLS as - on assocmtm g pwots thh the ori gms

twely, the sche of E2} operates in ‘reverse’ direction to that
auon there 1s based on pivots
ic] hi involves dis-
towards their destinations. In
| nization of the
and collecting messages

, some care 1S needed
Out-

v I al paradigm 1s con cep tually very sin
in designing the pivot selection and assi gnmem con su'uctm g the 1in- and

the data structures maintat n ai
algorithms in order to guarantee the adaptive properties and
uirements on the memory and the stretch. The following sections furnish
the details of the scheme.

4. TECHNICAL PRELIMINARIES

4.1. The concept of neighbourhoods

Our schemes are based on a notion of neighbourhood which 1s defined by
volume rather than radius (as in [9]). The neighbourhood of a vertex veV with
respect to a specific set of destinations S CV and a parameter 1<<j=<n, 1s a
collection of j of the nearest vertices to v from the set S. More precisely, order
the vertices of S by increasing distance from v, breaking ties by increasing ver-
tex names. Hence x <,y if either dist(x,v)<<dist(y,v) or dist(x,v)=dist(y,v)
and x <y. Then N(v,/,S) contains the first j vertices in S according to the
order <,. When S =V we sometimes omit the third parameter and write sim-
ply N(v,)).

The radius of the neighbourhood N (v,/,S) is defined as

r(v,J,S)=max, eN(\,J’S)dist (v,Xx).

The properties we need regarding neighbourhoods are the following.

1. For every vertex weN (v,},8), dist (v,w)<r(v,/,S).

2. For every vertex weS —N (v,},8), dist (v,w)=r(v,,S).

3. If weN(,j,S) and x occurs on some shortest path connecting v and w then
also weN (x,],95).

4. For every set SCV, vertices uweV and integer 1<j<n, r(u,j,S)<
r(w,j,S)+dist (u,w).

PROOF OF 3. By contradiction. Assume that weN(x,/,S). We claim that for
every zeN(x,j,S8), also zeN(v,j,S). In order to prove this 1t suffices to show
that every z e N(x,j,S) satisfies Z <, w, since w is included in N(v,},S).

Consider some :zeN(x,/,S). By the triangle inequality dist(v,z)
<dist(v,x)+dist(x,z). By Lemma 4.1(1), dist(x,z)<<dist(x,w). Since x is on a
shortest path from v to w, dist(v,w)=dist(v,x)+dist(x,w). Put together,
dist(v,z)<<dist(v,w).

286

ere are two cases to consider. If dist(v,z)<<dist(v,w) then the claim is
e B Y - OW Sl . . OSse d 1S g (v z} d 151 { V., Mﬁ} T 18N nece S‘%a ﬁ. E y AY E{ S wi —

Nw,j,S)|=j. O

4.2. Covers

[he pivot selection process has to guarantee that pivots are well-distributed
and properly ‘cover’ the neighbourhoods in the network. We now give some
basic facts concerning the concept of covers.

Consider a collection 3 of subsets of size s of a set B
of B appears in at least one set. A set of elements M C B 1s said to cover those
sets of IC that contain at least one element of M. A cover of J(1s an M CB
COVeEr1 l sets in J(. A fractional cover for J 1s a system of nonnegatwe real

welghts (t,JveB} such that 2, _st, =1 for every set S€I3. Let 1 =minZ,_pt,

where the minim ken over all fractional covers.

Since the weight system assigning 7,=1/s to every vertex v is a fractional
cover, we get

T*QIBVS.

Consider the follow

. SO that each element

ple procedures for creating a cover for .

ment that increases the number of sets covered by M as much as possible.
Stop when M becomes a cover. This M is called a greedy cover for X.

For the construction of our routing schemes we rely on the following Lemm
of Lovasz [7].

A 4.3. Let M be a greedy cover for J.. Then
|M| <(10g|‘}q 4+ 1)7* < _Q_QM .

A

\{ be a set constructed by the randomized algorithm above.

MA 4.5. orithm _ab
Then, with probability 1— O (|34 ™), M is a cover for } and |M]$———-J——£——L-1

287

5. DETAILS OF THI

3.1. Pivot selection

[he pivots are constructed as follows. Let Po=V, i.e. the set Py of pivots of
level O 1s sin the set of all the vertices. Fix m =n'/*. The pivots of level
P, ., for 0<<i<k — 1, are selected so as to have the covering property with
respect to the neighbourhoods N (v,m,P;) of pivots veP;. This process is

shown in Figure 2.

PoeV /* first pivot level */

| For i =0to k —1 do /* for all pivots levels */

He—~{N(,m,P;)lveP,;} /* new collection of sets */
P,‘.}.](—— COVER (S‘C) /¥ i + 1’st level of inOts; Pi+1 gP, */

FiGURE 2. Construction of pivot sets

A vertex v is a j-pivor if it belongs to P; (hence also to P; for 0<i<j) but
not to P;., (hence also not to P; for j +1<i<k). With every vertex v we
assoclate a unique pivot p;(v), referred to as the i-post of v, in every level
O<<i<<k. This i-post 1s selected as follows. First, po(v)=v 1s set for every veV.
Suppose that v is a j-pivot. For 0<<i<<j +1, p;(v) is taken to be the smallest
pivot in P; according to <,. For j +2<<i=<<k we define p;(v) recursively by set-
ting p;(v) =pi(p; - 1(v))-

Observe that the above construction guarantees that for 0<<i<<j, p;(v)=v,
and that p; +(v)eN (v,m,P;).

5.2. In-trees and upward routing

For each level O0<i<k and for each pivot veP;, let the in-zone of a pivot
veP; on level i, I1Z;(v), be the collection of vertices ¥ which chose v as their i-
post (1.€., such that p,(u)=v). Denote by IT;(v) a shortest path tree in G con-
necting v to the vertices in IZ;(v). Each vertex in IT;(v) maintains a pointer
upwards to 1ts parent in the tree. This makes routing towards the root trivial.
Note that, a-prion, this tree might contain also vertices not in IZ;(v). How-
ever, in order to analyze the memory requirements of the scheme we need to
prove that the in-trees of the various pivots in a given level P; are all disjoint,

hence each covers precisely its zone. This is done in the following technical
lemma.

LEMMA 5.1. For every O0<i<k and for every u,,u, €P;, IT;(u,) and IT;(u,) are
vertex-disjoint. -

PROOF. By contradiction. Assume that IT;(u,) and IT;(u,) intersect in some
vertex x for some u;, u;€P;. Then for j=1,2 there is a vertex w;elZ(u;) such
that x occurs on a shortest path connecting w; to u;. Without loss of general-

288

ntersection of the
Figure 3.
By the rules of the construction, since p;(w;) was set to u;, necessarily
Recall that a <, b 1if either dist(a,c)<<dist(b,c) or dist(a,c)=dist(b,c)
and a<<b). Since dist(u,,w,)=dist(u,,x)+tdist(x,w,) and dist(u;,w,)<
dist(uy,x)tdist(x,w,) 1t follows that u,;<, u,. Since dist(u;,wy)=
dist(u,,x)tdist(x,w,) and dist(u,,wr)<dist(u,,x)+dist(x,w;), 1t follows that
. Hence u, have been chosen as p;(w,); a contradiction. [

paths, tracing the

paths from the endpoir

FIGU‘FIWLE 3. Node xﬁ belongs to both wl T:(uy) and IT7T;(u,) |

Complexity. Routing a message from a vertex uelZ;,(v) to its i-post v 1s done
on the shortest path between them, so its communication complexity 1s
dist (u,v). By the disjointness of the in-trees (Lemma 5. 1) the amount of
memory stored in each vertex for this component is O(1) characters per level,
or O (k) characters overall.

5.3. QOut-trees

Define the out-zone of a pivot veP; on level i, OZy(v), as follows: For
o<i<k —1, let

OZ;(v) = {ulveN(um,P);), dist(u,v)é'}i“dist(v,p,-_,_l(v))}. (2)

Fori=klet OZ,(v)=V.

he apparently counter-intuitive restriction on the depth of the out-trees is
crucial for the analysis of the resulting stretch in Lemma 6.2. lhe idea 1s to
bound the cost of an unsuccessful search on an out-tree.

Denote by OT;(v) the shortest path tree in G connecting v to the vertices 1n
OZ;(v). Again, a-priori this tree might contain also vertices not in OZ;(v).
However, as an immediate application of Lemma 4.1(3) we get that this 1s not
the case.

MMA 5.2. For every 0<<i<k and v €P;, the vertex set of OT;(v) is exactly

289

COROLLARY 5.3. For every 0<i<k and ucV, the number of different out-trees
on the i-th level in which u participates is at most m.

[he vertex u might occur in at most m different out-zones OZ;(v).

['he routing procedure from the root downwards on the OT trees 1s quite com-
plex, and the rest of the section is dedicated to describing it.

5.4. Basic downward-routing

In this sub-section we consider a simplified version of the downward routing
problem, in which we are allowed to assign specially selected names to nodes.
['his 1s a basic subtask in many existing routing strategies.

Problem statement. Given is a directed tree T =(V’,E’) rooted at a vertex
reV’ (typically some special spanning tree of some cluster ¥’ in the network)
and an instance of the routing problem, where the origin is the root, and the
destination is not necessarily in the tree. The names of nodes in the tree can be

chosen by the routing scheme. If the destination is not in the tree then the
message 1S to return to the root.

This subproblem was treated in previous papers using a simple scheme called
the interval routing scheme and denoted ITR(G’,r) or ITR(V’,r) [1,2,9,10].
Using it in the adaptive setting poses some new technical problems, whose
solutions are the subject of this section.

Let us first supply some definitions. The depth of a node v in the tree 7,
denoted depthp(v), is the weighted distance dist(r,v) from the root to v. The
depth of the tree T, depth (T), i1s the maximum depth of a node in T.

We now give an overview of (a variant of) the ITR scheme. It 1s con-
structed as follows.

1. Assign the vertices v e V' a DFS (pre-order) numbering DFS (v) according
to T.

2. Store at a node u its DFS number and the DFS numbers DFS (w) of each
of 1ts children w in the tree.

Routing a message from the root r to a vertex v eV’ (assuming that r knows
the value DFS(v)) involves propagating the message from each intermediate
vertex u with children w,,...,w, (ordered by increasing DFS numbering) to the
child w; such that DFS (w;)<DFS (v)<<DFS (w; +) (setting DFS (wy +,) to o0).

Complexity. Consider the complexity of the ITR scheme on a tree of size ¢.
The amount of memory stored in a node v 1s O(degr(v)) characters, since a
node needs to maintain a data item for each of its outgoing edges, in order to
identify the intervals. As for communication overhead, consider separately two
cases. If the destination is outside the tree then the cost is at most 2 - depth (T),
since we traverse a path from the root to one of the leaves and back. If the
destination v 1s 1n the tree then we traverse the path from the root to v, and

290

the cost 1s deP tnp(v). (Observe that if T is an out-tree OT(r) in the g
ne path is Of len g@ dist (F’ V) since out-trees are Sh@ri est-

R

cr

balanced-memor;

ance by the orn gﬂns the scheme uses a distributed dats
structure enablmg the root to re&neve the DFS label of a u € using 1its ori

guaral 1tee that lf destlnaﬁ_lon occurs in the tree, we pay fOE‘ ﬁ.he sear ne

more than the distance from the root to the destination. This prohibits a solu-

tion spreading the data arbitrarily over the tree, since then the search for a
near by destination o

ay cost as much as the depth of the tree.
[he second P! roblem is han
a tree of ‘small’ degrees, without payin g too high
without increasing the depth of the tree too much.
[he next three subsections develop the necessary tools for solving these two
problems and present the combined solution.

5.5. Tree dictionary search

Problem statement. Consider a function F: X—Y on some ordered domain

— {x1 - <X lXi} iS F 1s a list of lXI palrs F = {(JC] ,y}), ()CIXI.,
) Xl)} (For x&X we set F(x)= undefined.) Also, consider a rooted tree T of
size ¢ with root r. QOur task 1s to store any function F on any tree T, as above,
and be able to support searches from the root. That 1s, lf r 1s given an arbi-
trary argument x (not necessarily in X) then the search returns F(x) (mcmdi ¥4
undefined, whenever x & X).

[he problem is solved using a distributed data structure called the Tree Dic
tionary. Define the load of the function as L =[|X|/n]|. Let DFS(v) denote
DFS number of a node v in the tree 7. Each node 1s required to store L values
of the function £, by increasing DFS order. That is, the node u with
DFS(u)=j stores the pairs (x;,y;)eF for (j—1)L -"-E<1z<]L Also, define
Lowest (v) for each node v as the minimal x whose value is stored at v (1e., 1f
DFS (v)=j then lﬂwest (v)=x¢-pr+1)- 1he variable Lowest(u) 1s n a_mtamed
at the node u as well as at its parent in the tree.

[he process of compuung value F(x) of an argument x is almost identical to
the one used in the DFS routing scheme. Namely, the search message 1S pro-
pagated from each intermediate vertex u with chﬂdren Wi,...,w, (ordered by
increasing DFS numbering) to the child w; such that Lowest(w;)<x <

Lowest (w; +1) (setting Lowest (wy 4+ 1) ----205:")

mplexity. Tree dictionary search requires O(L + degr(v)) characters at a
node v and O (depth(T)) communication cost.

5.6. Stratified tree dictionary
Now, we combine the ITR scheme with a tree dictionary to obtain a down-
ward routing scheme for trees.

Problem statement. Same as in Subsection 5.4, except that the names of nodes
in the tree are given, and not chosen by the scheme.

' mutmg schemes ITR for 7. Th all ueT, once DFS (u) 1s kn
can be reached. Ultimately, we would like to apply this /TR scheme to the tree
T. As mentioned before, we need to overcome the problem of storing (and
retrieving) the DFS numbers required for using the scheme. Note that we can-
not use a single tree dictionary for storing the DFS labels. This is because, as
said earlier, we might waste too much on searchmg a nearby destination. W
thus need to stratify the stored data and store it in a succession of larger and
larger trees.

For any m?>t¢ >0, and any tree T of size t, consider the g subtrees 7,
0<<i<g, so that T; contains the m' nodes closest to the root (7, =T). Observe
that To={r} and 7; CT; 4, and that if v T; then depthT(v)>depth(T)

The algorithm itself proceeds as follows. We construct several Tree Diction-
ary Search schemes 7DS; one for each tree 7;. Each of these schemes stores a
portion of the DFS function. Specifically, the scheme TDS; stores the subset of
DFS over the domain X;={v|veT;} at the nodes of the tree T; _;. Put another
way, if ueT; then the value DFS (u) will be stored on the tree 7; . Now, we

simply go through the whole hierarchy, until we find DFS (u) or declare that u
is not in the tree 7. The algorithm is formally presented in Figure 4.

je——1 /* level in the hierarchy */ |
DFS number « undefined /* DFS number of destination unknown */
do while DFS number = un deﬁned and i <<k

/* until Destination found or all levels exhausted */ |

| i + 1] /* go to the next level of the hierarchy */ -
DFS number < DICTIONARY TREE SEARCH(T;(Origin))

/* search for Destination address in 7; */

/* end of search for u */ |
/* DFS number of Destination has |
been found */

if DFS number 5 undefined tl

/* use ITR routing to deliver message to the destination */

FiGURE 4. Downward Routing Algorithm

292

17— 1|
intaining tree 7; at a node v are O(d egr,(v)+n Y ") characters, and overall

we need O(k(n '’ %+ degr(v))) characters at a node v.

(1S nIm d up searching th mu g
VIOTE SP emﬁcaﬁ Y, suppose first that &he destination u is

& bm uel; _, for some O0<i<k. |
20 <j<idepth (T ;) tor the searches plus depthr(u) for the path on the ITR
scheme, and most (k + 1)depthr(u). Now suppose ueT. Th
2Zo<j<kdepth (T)<(k + 1)depth (T') for the searches.

5.7. Controlling tree degrees
We now get rid of the dependency on the degrees usin g the following theorem.

[HEOREM J5.4. For any rooted tree T with maximal degree d, there exists an
embedded tree S on the same set of nodes and with the same root, but with a
different set of edges, so that

1. the maximal degree of S is 2n'’*;
2. an edge of S is a path of length at most two in T ;
3. depthg(v)<<(2k — l)depthy(v) for every node v.

Proor. Denote m=n'’*. Consider a node uq in the tree T with degree d and
children u,,...,z, . Here, we assume that the children are ordered in increasing
order of depth.

For every m=<a<d,, make u,; the parent of uw, in the tree S where
b=|a/m|—1.

Every node in the new tree S will have at most 2m children, including up to
m of its closest children and up to m of its siblings in the onginal tree T.

It is easy to verify that requirements (2) and (3) are guaranteed as well. [

We construct for the given tree 7 an embedded tree S as in the theorem, and
apply the downward routing algorithm to the embedded tree S, which 1s of
maximal degree O (n'’%).

Sending a message over an edge (x,y) of the simulated tree S requires the
origin x to specify the path represented by this edge in the real tree 7. In
practical terms, though, this contributes only a constant increase in the header
size of messages, by property (2) of the theorem.

Complexity. We finally consider the complexity of the resulting downward
routing algorithm. By property (1) of the theorem, the memory requirements
of the tree dictionary and the ITR scheme for S are O(k -n'’*) characters per
vertex (noting that the degrees of the subtrees S; are bounded by O(» /%) a
well).

The length of the resulting path is stretched by O(k) by property (3) of the

293

theorem, hence we now pay up to O(k 2 -depthp(u)) for ueTl and
O (k?* - depth(T)) for ugT.

6. COMPLEXITY ANALYSIS _ . ;
Our final task is to analyze the overall complexity of the hierarchical scl

ieme

. Memory requirements
In terms of memory we need to sum, for each node, the memory requirements
of maintaining all the in- and out-trees in which 1t participates, on all & +1
levels of the hierarchy.

lers.

A 6.1. The memory requirements of a vertex in HS, are O (kn 2/ %) charac-

PROOF. By the discussion of Subsection 5.2 each vertex v participates in at
most one in-tree component in each level, so the memory 1t uses for the in-
trees 1n all levels is at most O (k) characters. In addition, by Corollary 5.3 v
partici})ates in up to m out-trees at each level but the last. This involves
O(kn*'*) characters of memory. For the last level the cost is O(k|P; Ln“ “)
characters. By Lemma 4.3 |P;|<|P; _,|log|P; _1|/m, so since logn=o0(n'/*") for
sufficiently large n, |Py|<<m. It follows that O(kn**) characters are used by

each vertex for downward routing on the out-trees. Altogether,
MEMORY(HS,)=0(kn**. O

6.2. Stretch factor

The crux of our analysis is in estimating the length of the combined route
traversed by a message according to the scheme (including the cost of diction-
ary searches) and thus bound the total stretch. Here is where we make use of

the particular choice of pivots, the properties of covers and the definition of
out-zones.

LEMMA 6.2. For O<<i<k —1, if ue OZ;(p,(w)) then
1. dist(p; + (W), pi(w))<<2dist (u,p;(w)) and
2. dist(u,p;) (w))<<3dist (u,p;(w)).

PROOF. Let y =p;(w) and z=p, (w) (see Figure 5), and let P =P;. There are
two cases to consider in proving the first claim. If y e N(u,m, P) then the claim
follows straightforwardly from the definition of out-trees. So suppose
y&N(u,m,P). By Lemma 4.1(1,2) this implies r(u,m,P)<dist(u,y). Since
zeN(y,m,P), see Subsection 5.1, r(y,m,P)=dist(y,z). By Lemma 4.1(4),
r(y,m,P)<xr(u,m,P)~+dist(u,y). Put together, we get that dist(y,z)<<2dist(u,y),
which completes the proof of the first claim.

The second claim follows since by the triangle inequality, dist(u,z)<
dist(u,y)+dist(y,z). O

294

p Z = Py (w)

L <2.3d

* Ly = pios(w)
3td > '

| S 3'i —1 d

b w = p,(w)

d = dist(w,u)

F IGURI

5. Schematic representation of the routing process from the ori-
gin w to the destination u. The message is forwarded to the
first pivot p;(w) that is capable of reaching u. Observe that the
distance from p;(w) to u does not grow too fast.

As a result, we get the global distance relationships depicted in Figure 5 and
summarized in the following Corollary.

COROLLARY 6.3. For every 0<j <i and ue OZ;(p;(w))
1. dist(p;—(w),pi(w))<2-3 ~ . dist (u,w) and
2. dist(u,p,(w))<3"-dist (u,w).

LEMMA 6.4. If ue OZ(p;(w)) and ug OZ(p;(w)) for every 0<j <i then the cost
of routing a message from w to u using H S, satisfies C(HSp,w,u)<
k*(2- 3" — 1dist (w,u).

Proor. The route constructed by the scheme consists of i +1 segments. Each
of the first i segments starts with a local search for u using the tree dictionary,
followed by a climb up the in-tree IT;(p;(w)) to the next pivot. The cost of the
search on level j 1s O(kzdepth(OTj(p i(w)))). By the construction of out-trees,
depth(OT(pj(w)))<1/ 2dist(pj(w),p; +1(w)). The movement from the pivot p;(w)
to pj+1(w) is done (using the in-trees) along shortest paths, and its length 1s
therefore exactly dist(p;(w),pj+1(w)). Thus the entire spending in the j-th level
1S O(kz-dist(pj(w),pj_H(w))). On the i-th level itself we forward the message to
u by downward routing (i.e., successful tree dictionary search followed by /TR

295

routing) paying, by similar arguments, an overall of O(kz-depthmw‘(w»(u))

— U UC 2 -dist (P;‘ (W)7 u))
Overall we get that

C(HSp,w,u)<k?*(>

1

<k?(3'+2

P —1(W),pj(w)) +dist (p(w),u))

S 3~ Ddist(u,w)<<k2(2-3' — Ddist(u,w). O

l<j<i

COROLLARY 6.5. The stretch factor of the routing scheme HS satisfies
STRETCH(HS,) = O(k*3%).

['HEOREM 6.6. For every n-vertex network G and for every k=1 it is possible to
construct a hierarchical balanced scheme HS); with

1. MEMORY(HS,)=0(kn*"*), and

2. STRETCH(HS,,G)=0(k*3%).

7. DISTRIBUTED PREPROCESSING WITH BOUNDED SPACE

7.1. Overview
In this section we describe a distributed preprocessing algorithm that initializes
the schemes HS;. We present a Monte-Carlo version of this algorithm, 1.e., a
version 1 which the algorithm may make a mistake with small probability. It
1s easy to modify our algorithm to be a Las-Vegas algorithm, by detecting the
fact that there is no pivot in a certain neighbourhood; in this case the algo-
rithm is restarted. Its space overhead is O (kn'’* +k*) characters.
Our algornthm employs the following four procedures.

1. Initialization procedure: appoints all the pivots and triggers all other pro-

cedures.

2. Forwarding-Construction procedure: constructs the parent pointers of the
forwarding schemes and the zones.

3. DFS-Numbering procedure: simultaneously operates on the spanning trees
of all the zones, assigning DFS numbering to the nodes of the tree for the
ITR schemes, as well as constructing children pointers in the zones.

Upon termination of this procedure, the Post-Update procedure below is
executed.

4. Post-Update procedure: specifies for each vertex its posts.
Each of those procedures has local variables, and output variables. The

local vanables are recognized only inside the procedure, while the output of

the procedure 1s written in output variables. Initially, all the variables are ini-
tialized to ni/ or 0 as appropriate.

296

7.2. Initialization procedure

7.2.1. Outlme

abies p i» SO |

very Vertex is a- woa m Eeveﬁ 0

- on m lev eE I with DIOb a bilit y ¢ lo gn/m; n
guarantees that, on average,
moreover, there exists a pivot in every neighb

probability 1—O(n'"¢). Observe that selection of

pwot at Eevei i -—-~E
c>1 1S a constant.
|P,| — IPx —1 |log I /m, 21
pivots as above requus mmunication.

Upon termin aﬂon of selection process, each - e tn 188eTS the Forwarding-
C onstmctwn proced DFS-Numbering

See formal presentation in Appendix, section A.l.

7.3. Forwarding-Construction procedure

7.3.1. Basic strategy. Our purpose 1s to construct a forwarding routing scheme
FR(P; —;,m). The essence of this construction 1s specifying, for each node v,
pointers FE (w), pointing to neighbours of the node, for nodes in N (v,m,P; _,),
namely m pivots of level i —1, which are closest according to the <, ordering.
Additional task of this procedure is to construct parent pointers Parent; for the

zones of level i.

The algorithm below takes advantage of the fact that network 1s synchro-
nous and that delays are very closely related to costs of the edges. Thus, delay
of a message sent over a communication path p is ‘essentially’ the cost cost (p)
of that path; to be more precise it varies in between cost (p) and cost (p — 1).

The node v will keep a list List;, which will contain pairs (u,w), such that the
node v thinks that uEN (v m,P; _), and w=FE;(u). Also, it will keep a vari-
able Parent;, which is initializ ..

Each node u, which 1s a plvot of level i —1, will initiate a broadcast process,
which propagates message FORWARD;(u) through the whole network. Once a
node v which receives such messa ge F OR WARD;(u) from w, it checks whether
Parent;, =nil; if so it sets Parent;:=w. Also, it checks whether List; contains
already a pair (u,w). If no such pa_u' exists, it means that message from u has
been received for the first tn [hen, the node v adds pair (u,w) to List;, and
propagates this message to all neighbours

In fact, node v will propagate only FORWARD;(u) messages for nodes
ueN(,m,P;_;), and discards messages of nodes outside of N (v,m, P,_1) For-
mally, for nodes ueN (v,m,P; _,), we define r;(v,u) be the time at which node v
receives FORWARD;(u) message for the first time. It is defined as oo if such
message Never arrives.

Under the strategy described above, for all nodes ueN(v,m,P;_),
1t:(v,u) [=dist (v,u). This fact is proved by induction on the length of a shor-

297

yduc-

induction step (the base of u

tion 1S trivia
- e strategy described above makes an assumption that

7. 3.2. Technical details. Denote r=r(N(v,m,P; _,)) (rad
Let us divide the set P; _, into the following four classes:
1) Class A contains all elements u €P; _; such that disz (u,v)<<r.

2) Class B containing the smallest m —|4| elements weP;_; such that
dist (u,v)=r. This class is empty if |4 | =m.

3) Class C containing the all elements u€P; _; such that dist (u,v)=r, which
are not in class C.

4) Class D contains all elements u €P; _, such that dist(u,v)>r.

Clearly, N (v,m,P; _,) is union of classes 4 and B.

[he invariant of the algorithm is that by pulse g, List; contains all pairs

(u,w) such that for all nodes ueN (v,m,P;), with dist(u,v)=<gq. Under that

invariant, observe that:

1) At clock pulse r —1, List; contains all elements corresponding to class A
and no other elements. Thus, |List;|=|4|<<m at this pulse.

2) Let S be set of nodes u such that in between clock pulse r, and clock
pulse m, node v receives for the first time FORWARDING;(u) message.
Then, S is union of classes B and C. Also, nodes in class B are m —|A|
smallest node names among nodes in set S, and nodes 1n class C whose
names the node heard in between pulses r —1 and r are the remaining
nodes 1n class S.

3) At clock pulse r, List; contains all elements corresponding to class 4 and
B and no other elements. Thus, |List;|=|A4|+|B|=m at this pulse.

[his enables to recognize FORWARD,;(u) messages of nodes u in class D,
since upon their first arrival |List;|=m. Node v can recogmize FORWARD;
messages of nodes u in class A as upon their first arrival |List;|<<m. Th
problem is to figure out how to distinguish between nodes in classes B and C,
since their FORWARD message arrive (for the first time) in between pulses

r —1 and r in arbitrary order, i.e. messages of nodes from B do not necessarily
enter before nodes in C.

What we need to do during this time interval is to delete dynamically nodes
from C, as we insert nodes from B. Towards that goal, each node maintains a
list New;, which contains all new entries that node has heard since last pulse,
which are ‘candidates’ to enter into List;. Upon each clock pulse, the New; list
1s added to List; list, and then emptied.

In general, whenever a node receives FORWARD;(u) message from a neigh-
bour w, it checks whether either List; or New; contains a pair (u,w), Or
|List;|=m. If either one of those is true, the message is discarded. Else, the
node inserts the pair (u,w) into New; list. Next, the node checks whether

|New;|+|List;|>m. If this 1s indeed the case, then it means that
298

ius of N(v,m,Pi.__i)).

entries N
um of sizes of N ew; and

an easily i1dentify
|Lzsz‘ | =m at v.

7.4. DFS-numbering and zone-construction
] p (for each level i) the level i zones, and the ITR,
Recall that zones have been determined by FParent,
ed in F orwardm g Conszrucnon pmce dure of the prevmus sub-—
zone, which are of COUrse un quely dete m Parent pointers.

For each pivot g of level i, we consider the tree Ti(q), which defines the zone
Z; (q) of level i around i.

We assign a DFS (pre-order) number to each vertex v, and maintain
counters Lowest; and Highest; as the lowest and highest pre-order DFS
numbers in the sub-tree rooted at v. The interval int(v)=(Lowest;, Highest;)
all nodes in v’s sub-tree of level i. (Recall that Lowest,; 1s
the l nun ber of v itself.) Also, for each child u# of v, we maintain parame-
ters (Lowest;(u), Highest;(u)), where Highest;(u) equals Highest; of node u, and
Lowest;(u) equals Lowest; of node u.

[he DFS proceeds by forwarding a token, which represents the ‘center of
activity’ along network edges. An interesting property of the DFS procedure 1s
that initially the node does not know its children in the zone tree, but knows
its parent, since the Forwarding-Construction procedure above only specifies
parents. Only upon term auon of the exploration process from a given node
will that node kn all its chil [hus, the token 1s going to traverse edges
of the tree as well as other edges outgoing from the tree to nodes outside of
the tree.

Another interesting property 1s that, 1n fact, node q staﬂs DES p

without waiting for the Pprocess of propagating of FORWARD mcssages to ter-
minate, i.e., when DFS is started, the construction of tree 7;(g) is not complete
yet. In fact, as seen from the code in Section 5.2, DFS 1s started one pulse
after transmission of FORWARD messages. This guarantees that the ‘wave’ of
FORWARD messages will precede the token by at least on pulse.
[hat is, once token moves from u to v in DFS, then v already knows
whether u is its Parent. If this is the case, then v executes DFS with respect to
itself. Otherwise, the DFS is immediately returned back to u, and u looks for
other unexplored edges. If there are no more unexplored edges, then DFS ter-
minates and returns to the parent of u.

Transmission of a token is performed by sending a VISIT(p) message,
where p is the highest DFS number in the sub-tree rooted at the node which

299

section.

urns token to u, and u 1s not the Parent of v, i.e. u sent th
"by mustake’. In this case, the value of parameter ¢ is nil.
See formal presentation in Appendix, section A.3.

7.5. Post-Update procedure

Observe that whenever an (i — 1)-pivot u, i.e., a node which is a pivot of level
i —1 but not of level i, learns about its post of level j>i —1, 1t has to pass on
this information to all the lower-level pivots in its sub-tree. For that purpose, it
broadcasts POST messages over its zone. The lower-level pivots in that zone
will rebroadcast that message over their zones, etc., until it will reach all the
lower-level pivots.

See formal presentation in Appendix, section A 4.

7.6. Complexity of the algorithm

It takes km characters to maintain all lists List;, and New;. Also, it takes k?
characters to maintain Closest;, k characters for p;, Closest;, Parent,, Chzldren
Overall it amounts to O (k? +n 1 “k) characters, each one of log n bats.

300

" See Flgure 6.

Set i : =0 and Coz'n:“-:-“head
Set Pi: mself /* you are a . of level i */
edure Forwarding-Construction(i)

Coin so that 1t comes head with probability %
| C logn/ m for some constant ¢ > 1.

j:=i—1 /* you are a j-pivot */
wait one clock pulse
For i =1 to j do:
Tngger DFS — Numbering (i)
- End For

FIGURE 6. Initialization procedure

A.2. Forwarding-Construction

i Jata S TUCTUres

We assume the existence of data structures that support the following opera-
tions on dynamic sets S whose members are ordered pairs (a,b), which are
stored according to key a. For any two different tuples (a;,b,), (a3,b,) in S,
a lr,éa 7.

Member (S,a): returns true if there exists ¢ such that (a,c)&eS; else returns
false.

Insert (S, (a,b)): adds (a,b) to S.
Delete (S,a) : deletes element (a,b) from S, if there is any.

ExtractMax (S): returns the tuple (a,c)eS with the largest key a among all
elements of S.

DeleteMax (S): abbreviation for Delete (S, ExtractMax (S)).

ExtractMin (S): returns the tuple (a,c)eS with the smallest key a among all
elements of S.

szze(S) returns the number of elements in S.

: ariables FE;(w) (the forwarding edge to w, kept for each w in List;).
Closest (the closest pivot at level i to v).

301

ent of v in the zone of at level i, defined by Closest;.

Parent;:

Ehe p 21

- 088 _ C SeE . COn E A1t __ ;
weN (v,m,P;). Imtially, List;= &.

g

| send message FORWARD;(v) to all neighbours w.
| Upon receiving FORWARD;(u) message from neighbour w:
if Parent; =nil then Parent;: =w
if Member (List;,u)= false and Member (New;,u)= false and
|List;|<<m then Insert(New;,(u,w)) /* insert tentatively */
if size(List;))+size(New;)>m
then DeleteMax(New;) /* handle overflow */
Upon Clock pulse:
if size (List;)=0 and size (New;)>=>0 then
(u,w): = ExtractMin(New;)
Closest;:=u /* closest pivot of level i */
Parent;:=w /* choosing the parent in the zone of v */
for all neighbours w, and all (u,w)eNew,,
FE(u):=w
send message FORWARD;(u) on the link to w
Insert (List;,(u,v)),
Delete (New;,u).

FIGURE 7. Forwarding — Construction (i) for a node v
A.3. DFS-numbering and zones construction

Output variables
Children;: the set of children of v in the zone of at level ;.
Lowest;: DFS (pre-order) number of the node in the DFS of level i.
Lowest;(w): an estimate of Lowest; of a neighbour w.
Highest;=: the maximal DFS number assigned to a vertex in the
rooted at v.
Highest(w)=: an estimate of Highest; of a neighbour w.
Unvisited;: the set of unvisited nodes in the DFS of level i.
Unvisited; contains all the neighbours of v.
The procedure
See Figure 8.

302

ist of edges (w,FE;(w)) for each

ing list of elements which are candidates to enter

d

sub-tree

Initially,

procedure (at the root):
[.oweslt jo— 1 3

roced ure
Lf Unvisited, #@ then
pick u € Unvisited,
delete u from Unvisited;;
[owest;(u): = Highest; + 1
send VISIT;(Highest;) to v;
Else
if Parent;5%~nil, then
send Retreat,(Highest;) to
else (Parent; = nil)
Trnigger Procedure Post — Update (i)
Upon receiving VISIT;(p) from u:
| RETREAT (nil) to u

rarent;;

if us=Parent; then send
else
Lowest;:=p + 1,
Hzghest =p +1

if ps~nil then
add u to Children;
Highest;(u):=p,
Highest;: =p,

else /* p =nil */
Lowest;(u): = nil
Highest;(u): = nil

Call DFS,.

FIGURE 8. DFS — Numbering (i) for a node self

A.4. Post-Update

Di: 1v0t f the node at level i. Initialization guarantees that p;, =self for nodes
Wh_lCh are plvots of level i

See Flgure 9

303

for 1 j >i, for which p;5~nil,
for each node z in Children;, send message POS T;(j,pj) to z.
- Upon receiving POST;(j,u) from w = Parent;: :
for each node z in Children;, send message POST;(j,u) to z.
lfP, —1 --Sé’!f then
pji=u,
for each node z in Children; _,
send message POST; _(j,u) to z.

FIGURE 9. Post — Update (i) (for a node self)

ACKNOWLEDGEMENTS
We thank Mike Saks and Noga Alon for helpful discussions and criticism of
earlier versions of this paper.

REFERENCES

1.

10.

11.

BARUCH AWERBUCH, AMOTZ BAR-NOY, NATI LINIAL, DAvVID PELEG
(1988). [Improved Routing Strategies with Succinct Tables, Technical
Report MIT/LCS/TM-354, Massachusetts Institute of Technology.
BARUCH AWERBUCH, AMOTZ BAR-NOY, NATI LINIAL, DAVID PELEG
(1988). Memory-Balanced Routing Strategies, Technical Report
MIT/LCS/' TM-369, Massachusetts Institute of Technology.

GREG N. FREDERICKSON, RAVI JANARDAN (1986). Seperator-based stra-
tegies for efficient message routing. 27th Annual Symposium on Founda-
tions of Computer Science, Toronto, Ontario, Canada, 428-437, 1EEE.

GREG N. FREDERICKSON, RAVI JANARDAN (1988). Designing networks
with compact routing tables. Algorithmica 3, 171-190.

L. KLEINROCK, F. KaMOUN (1977). Hierarchical routing for large net-

works; performance evaluation and optimization. Computer Networks 1,
155- 174

L. KLEINROCK, F. KAMOUN (1980). Optimal clustering structures for

hierarchical topological design of large computer networks. Computer
Networks 10, 221-248.

LAszLO LovAsz (1975). On the ratio of optimal integral and fractional
covers. Discrete Mathematics 13, 383-390.

R. PERLMAN (1982). Hierarchical networks and the subnetwork partition
problem. 5th Conference on System Sciences.

DAvVID PELEG, ELl UPFAL (1988). A tradeoff between size and efficiency
for routing tables. Proceedings of the 20th Annual ACM Symposium on
Theory of Computing, 43-52, ACM.

N. SANTORO, R. KHATIB (1985). Labelling and implicit routing in net-
works. The Computer Journal 28, 5-8.

C.A. SUNSHINE (1982). Addressing problems in multi-network systems.
IEEE INFOCOM, IEEE.

304

12. A. TANENBAUM
13. J. VAN LEEUW

Routin g with com pact routin g tab les.
l'he Book of L, 259-273, Sprninger-

14. Interval routing. The Computer Jour-
nal 30, 298-307.

ture for open systems interconnection.

305

